Engineering has reviewed the plans for the Woodlands Landing at Echo Farms-Tract 3A project submitted April 24, 2019 and have the following comments:

Supplement-EZ Form

1. Pond 3A-2: The impervious numbers appear to have changed in the SW application. The Supplement needs to reflect the changes. Resubmit corrected page.

Stormwater and Erosion Control Narrative

- 2. <u>Previous comment:</u> Pond #A-2 has changed slightly in drainage area and proposed impervious surface area. Please update Wet Pond 3A-2 (Pond Node 7P and Post Dev Node 6S) in the Proposed Stormwater Control Measures section. Same for Wet Pond 3A-3. See attachment for required revisions.
- 3. <u>Previous comment:</u> Update the Pond 3A-2 NCDEQ Wet Retention Calculations to reflect the minor changes in drainage area and impervious surface area. See attachment for required revisions.
- 4. Storm Drain Design Computations Pond 3A-3: The revised calculations were not submitted for review.
- 5. <u>Previous comment:</u> *Update Pond 3A-2 routing to reflect the minor changes in the drainage area and impervious surface area.* See attachment for required revisions. Submit updated Pond 3A-2 Blocked Routing, as well.

Plans

- 6. C-2.0/2.3: The MUP crossing at the southern end of Chastain has changed from a crosswalk. Was this an intentional change? A MUP cannot cross a public road in this manner.
- 7. C-2.1: **Note only:** a private drainage easement is recommended to protect the drainage feature downstream of the pond outlet that cuts across NHC property.
- 8. C-2.3/4.3: A public utility and access easement should not be used for the equalizer pipe. "Public' would mean that someone other than the 3A property owner would own and maintain the pipe, which I don't believe is the case. There needs to be a private drainage easement over it, NHC must give 3A the easement.
- 9. C-4.1: Change the "BYPASS 18" PIPE NETWORK" to 24".
- 10. Placeholder only. Landscape Plans:
 - a. Resubmit landscape plans with the correct storm drain layout. There are a lot of extraneous SD pipe layouts. It is very difficult to tell what is correct.
 - b. Neither landscape plans nor stormwater design plans demonstrate compliance with City standard detail SD 15-16. Also, add the detail to the plan set.

Please submit <u>digitally</u> revised plan sheets, the revised supplement page, narrative, calculations and any other supporting documentation to Engineering for additional review. Please call or email if there are any questions. Thank you.

Woodlands Landing at Echo Farms

THE DRAINAGE AREA				
Drainage area number	3A-2	Break down of BUA in the drainage area (both new and existing):		
Total coastal wetlands area (sq ft)	sf	- Parking / driveway (sq ft)	71,4	
Total surface water area (sq ft)	sf	- Sidewalk (sq ft)	24,0	
Total drainage area (sq ft)	268,950	- Roof (sq ft)	51,0	
BUA associated with existing development (sq ft)	sf	- Roadway (sq ft)	21,1	
Proposed new BUA (sq ft)	167590 169,075	- Other, please specify in the comment box below (sq ft)	<u></u>	
Percent BUA of drainage area	62.9%	Total BUA (sq ft)	(169,0	
COMPLIANCE WITH THE APPLICABLE STORMWATER PROGRAM	62.4%			
Stormwater program(s) that apply (please specify):		Design rainfall depth (in)	1.5 in	
MDC [15A NCAC 02H.1053] - North Carolina coastal stormwater rules		Minimum volume required (cu ft)	20,86	
		Design volume of SCM (cu ft)	23,2	
GENERAL MDC FROM 02H .1050				
#1 Is the SCM sized to treat the SW from all surfaces at build-out?	Yes	#7 If applicable, with the SCM be cleaned out after construction?	Yes	
#2 Is the SCM located on or near contaminated soils?	No	#8 Does the mainetenance access comply with General MDC (8)?	Yes	
#3 What are the side slopes of the SCM (H:V)?	(3:1)	#9 Does the drainage easement comply with General MDC (9)?	Yes	
#3 Does the SCM have retaining walls, gabion walls or other engineered side slopes?	No	#10 If the SCM is on a single family lot, does the plat comply with General MDC (10)?	No	
#4 Are the inlets, outlets, and receiving stream protected from erosion (10-year storm)?	Yes	#11 Is there an O&M Agreement that complies with General MDC (11)?	Yes	
#5 Is there a a bypass for flows in excess of the design flow?	Yes	#12 Is there an O&M Plan that complies with General MDC (12)?		
#6 What is the method for dewatering the SCM for maintenance?	Pump (preferred)	#13 Was the SCM designed by an NC licensed professional?	Yes	
WET POND MDC FROM 02H .1053				
#1 Method used	SA/DA	#6 Width of the vegetated shelf (feet)	6 ft	
#1 Surface area of the main permanent pool (square feet)	13,069	#6 Location of vegetated shelf	Submerged	
#1 Volume of the main permanent pool (cubic feet)	41,301	#6 Elevation of top of shelf (fmsl)	11 ft	
#2 Average depth of the main pool (feet)	3.9 ft	#6 Elevation of bottom of shelf (fmsl)	10 ft	
#2 Was the vegetated shelf included in the calculation of average depth?	No	#6 Slope of vegetated shelf (H:V)	(6:1)	
#2 Elevation of the bottom of the permanent pool (fmsl)	6.0 ft	#7 Diameter of drawdown orifice (inches)	2.5 in	
#2 Elevation of the top of the permanent pool (fmsl)	11.0 ft	#7 Drawdown time for the temporary pool (hours)	64 hrs	
#2 Elevation of the top of the temporary pool (fmsl)	12.25 ft	#7 Does the orifice drawdown from below the top surface of the permanent pool?	Yes	
#3 Depth provided for sediment storage (inches)	12 in	#8 Does the pond minimize impacts to the receiving channel from the 1-yr, 24-hr storm?	Yes	
#4 Are the inlet(s) and outlet located in a manner that avoids short-circuiting?	Yes	#9 Are fountains proposed?	No	
#4 Describe any measures, such as berms or baffles, that will be taken to improve the flow p	ath:	#9 If yes, is documentation provided per Wet Pond MDC (9)?	No	
		#10 Is a trash rack or other device provided to protect the outlet system?	Yes	
#5 Volume of the forebay (cubic feet)	7816	#11 Are the dam and embankment planted in non-clumping turf grass?	No	
#5 Is this 15-20% of the volume in the main pool?	Yes	#11 Species of turf that will be used on the dam and embankment	see below	
#5 Depth of forebay at entrance (inches)	48 in	#11 Describe the planting plan for the vegetated shelf:		
#5 Depth of forebay at exit (inches)	36 in	Bermuda Sod. Contractor to install a minimum of 3 species on the sloped shelf in a 6' x33' area	(200sf) based on plant	
#5 Does water flow out of the forebay in a non-erosive manner?	Yes	material and water depths. Suitable plants (plugs) will follow the pond details on the drawings.		
#5 Clean-out depth for forebay (inches)	36 in			
#5 Will the forebay be cleaned out when the depth is reduced to less than the above?	Yes			
ADDITIONAL INFORMATION			HARRICH RESIDENCE	

^{- &}quot;Other" for breakdown of BUA is offsite sidewalk and roadway to be constructed for Tract 3A and draining to Pond 3A-2

Wet Pond 3A-2 (Pond Node 7P and Post Dev Node 6S)

Reference Appendix HydroCAD Report Post-Development Pond

DA = 6.06 acre 6.17 acre 3.90 ac BUA (CN=98) 3.85 ac BUA

2.16 acres of 75% Good Grass Cover with HSG Type C Soils (CN=74) 2.32 ac

update the routing info accordingly, if needed.

Composite CN = 89

 $Tc = 13 \min$

Pond Routing Peak Elev:

WSEL2 = 13.09

WSEL10 = 14.04

WSEL25 = 14.34

WSEL50 = 14.50

WSEL100 = 14.69 < Emer. Spwy = 15.25 & Top Pond = 16.00

Principal Outlet Blocked - Emergency Overflow Analysis

WSEL50 = 15.47 < Top of Pond = 16.00 (0.5-ft Freeboard Provided per City TSSM)

WSEL100 = 15.58 < Top of Pond = 16.00

Building FFE = 17.75 (No Flooding of Structures)

DA- 1 PRE v POST RUNOFF SUMMARY:

Pre-Dev:	Post-Dev Pond 3A-1:			
Q2 = 11.61 cfs	<Q2 = 5.55 cfs			
Q10 = 25.40 cfs	<Q10 = 21.67 cfs			
Q25 = 31.27 cfs	<Q25 = 25.91 cfs			

DA- 2 PRE v POST RUNOFF SUMMARY:

Pre-Dev:	Post-Dev Pond 3A-2:			
Q2 = 5.79 cfs	<Q2 = 3.34 cfs			
Q10 = 12.65 cfs	<Q10 = 9.91 cfs			
Q25 = 15.57 cfs	<Q25 = 13.87 cfs			

PROPOSED STORMWATER CONTROL MEASURES

Pre-Developed Drainage Area 3 (Node 6S)

Reference Appendix HydroCAD Report Pond 3A-3

DA = 13.54 acre

75% Woods in Good Condition with HSG Type C Soils (CN=70)

75% Woods in Goof Conditions with HSG Type A Soils (CN=30)

Composite CN = 68

Tc = 15.2 min (TR-55 Segmental Method)

Wet Pond 3A-3 (Pond Node 2P and Post Dev Node 1S)

Reference Appendix HydroCAD Report Post-Development Pond 3A-3

DA = 13.54 acre

6.07 ac BUA (CN=98) 6.17 ac

0.37 acres of 75% Good Grass Cover with HSG Type A Soils (CN=39)

7.09 acres of 75% Good Grass Cover with HSG Type C Soils (CN=74)

Composite CN = 84

Tc = 13 min (TR-55 Segmental Method)

Pond 3A-3 Routing Peak Elev:

WSEL2 = 12.86

WSEL10 = 13.69

WSEL25 = $14.08 \le \text{Emergency Spillway} = 14.10$

WSEL50 = 14.24

WSEL100 = 14.35 < Top Pond = 15.00

Principal Outlet Blocked - Emergency Overflow Analysis

WSEL50 = 14.52 < Top of Pond = 15.00 (Approx. 0.5 ft Freeboard per City TSSM)

WSEL100 = 14.56 < Top of Pond = 15.00

Roadway = 16.50 (No Flooding of Roadway during 100-yr)

DA- 3 PRE v POST RUNOFF SUMMARY:

Pre-Dev:	Post-Dev Pond 3A-3:			
Q2 = 18.18 cfs	<Q2 = 17.98 cfs			
Q10 = 41.39 cfs	<Q10 = 38.95 cfs			
Q25 = 51.40 cfs	<Q25 = 42.68 cfs			

pervious cover egrals 7.37 ac.

Woodlands Landing Tract 3A (Wet Pond 3A-2)

NCDEQ Wet Retention Basin MDC [15A NCAC 02H.1053]

Objective: Design a wet retention basin with the following characteristics: a permanent water pool depth between 3 and 8-feet with a temporary water pool sized to detain the design storm (1.5" coastal depth or 1-yr pre-post vol) depending on which watershed the project drains into. The stormwater flow path shall be adequate for water quality and discharges in non-erosive manner Long Term Pond Performance is up to the permitee's responsibility in regards to the O&M standards per the permit conditions.

Step 1: Determine the surface area required base Post-Development Condition		Ratio Coasta	al Tand Average Dept. MDC 1 & 2.	6.17 ACRE				
Total Drainage Area Impervious Drainage Area	6.06 3.90	ACRE ACRE	Value from CAD Value from CAD	6.17 ACRE 3.85 ACRE 62.40				
Impervious Cover	64.7%		Impervious Cover=(Impervious Drainage Area)/(Total Drainage Area)*100%	62.40				
Elevation of Permanent Pool Surface	11.0	FT	Value selected by designer					
Elevation of Wet Detention Pond Bottom	6.0	FT	Value selected by designer (Excludes Sed	. Storage)				
Depth of Permanent Pool	5.0	FT	, <u>,</u>					
Avg. Depth of Permanent Pool	3.9	FT	Value from Avg. Depth Calculation [MDC	2; Equation 3]				
Required SA/DA Ratio	3.67		Value from Coastal NC Chart					
Required Permanent Pool Surface Area	9,688	SF	Required Surface Area=(Required SA/DA Ratio)*(Total Drainage Area)					
Provided Main Pond Perm. Pool Surface Area	13,069	SF	From stage-storage calculations					
Step 2: Determine the Design Storage Elevation	within the wet	detention	pond. MDC 2 and MDC 3.					
Runoff Coefficient, Rv	0.632	IN/IN	Rv=0.05+0.009*(% Impervious)					
Required 1.5" Runoff Volume (Volume of Temporary Pool)	20,864	CF	1.5" Runoff Volume=1.5 inch*Rv*1 foot/. inch*(Total Drainage Area)	12				
1-yr, 24-hr Pre-Dev Volume	n/a	CF	HydroCAD SCS Hydrographs					
1-yr, 24-hr Post-Dev Volume	n/a	CF	HydroCAD SCS Hydrographs					
Required Runoff Volume (Volume of Temporary Pool)	20,864	CF	1.5" Runoff Volume or 1-yr, 24-hr Pre/Po Volume Difference as applicable	st				
Storage Elevation at Required Volume	12.12	FT	Value from stage-storage table.					
Storage Elevation Provided	12.25	FT	Value selected by designer					
Storage Volume Provided	23,222	CF	Value is based upon stage-storage values					
			See HydroCAD stage-storage hydrographs	5J				
Step 3: Calculate the required forebay volume (1 Main Pond Volume	5-20% or peri 41,301	CF	Main PPool Volume					
15% Main Pond Volume	6,195	CF	Forebay Volume=(Main Pond Volume)*15	70%				
20% Main Pond Volume	8,260	CF	Forebay Volume=(Main Pond Volume)*20					
Provided Forebay Volume	7,816	CF	Value from stage-storage tables	70				
	18.9%		value nom stage-storage tables					
Forebay Percentage	16.970			,				
Step 4b: Verify the time required to drawdown th	he required rui	noff volume	is within 2 to 5 days. MDC 7.					
Diameter of Proposed Low-flow Orifice	2.50	IN	Value chosen by designer					
Storage Elev at required volume	12.12	FT	Value from above					
Head (Ho)	1.02	FT	(Ho)=(Design Storm Staging Elev)-(Centrorifice elevation)	old of				
Driving Head (Ho) for Orifice Equation (Ho/3)	0.34	FT	Ho/3					
Cd, Coefficient of Discharge	0.60		Value chosen by designer	,				
Q, Flowrate Through Low-flow Orifice	0.10	CFS	$Q=Cd*(Pi)*[(Diameter of Orifice)*(1 ft/12 in)]^2/4*[2*32.2*(Averge Head)]^1/2$					
Drawdown Time for Req'd WQV	2.52	DAYS	(Drawdown Time)=(Req'd Runoff Volume, day/86400 seconds)	0/Q*(1				
Step 4b: Verify the time required to drawdown the provided runoff volume is within 2 to 5 days. MDC 7.								
Diameter of Proposed Low-flow Orifice	2.50	IN	Value chosen by designer					
Storage Elev at Next Highest Outlet	12.25	FT	Value from above					
Head (Ho)	1.15	FT	(Ho)=(Design Storm Staging Elev)-(Centrorifice elevation)	old of				
Driving Head (Ho) for Orifice Equation (Ho/3) 0.38 FT Ho/3								
Cd, Coefficient of Discharge	0.60		Value chosen by designer					
Q, Flowrate Through Low-flow Orifice	0.10	CFS	Q=Cd*(Pi)*[(Diameter of Orifice)*(1 ft/12 in)]^2/4*[2*32.2*(Averge Head)]^1/2	?				
Drawdown Time for Provided WQV	2.65	DAYS	(Drawdown Time)=(Provided Runoff Volume)/Q*(1 day/86400 seconds)					

Page 2

Woodlands

Prepared by Paramounte Engineering

HydroCAD® 10.00-20 s/n 08414 © 2017 HydroCAD Software Solutions LLC

Summary for Subcatchment 2S: PRE DA#2

Runoff = 5.79 cfs @ 12.14 hrs, Volume=

0.481 af, Depth= 1.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=4.60"

	Area	(ac) C	N Des	cription		
	3.	310 7	'0 Woo	ods, Good,	HSG C	
3.310 100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	8.3	100	0.0200	0.20		Sheet Flow,
	1.4	375	0.0900	4.50		Grass: Short n= 0.150 P2= 4.50" Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps
-	9.7	475	Total			

Summary for Subcatchment 6S: DA#3A-2 POST

Runoff = 18.86 cfs @ 12.18 hrs, Volume=

1.712 af, Depth= 3.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type III 24-hr 2-Year Rainfall=4.60"

	Area	(ac) C	N Des	cription					
	2.	160 7	'4 >75°	% Grass c	over, Good	I, HSG C			
	* 3.	900 9	8 BUA	١					
6,17	6.	.060 8	9 Wei	ghted Ave	rage		1.	11	
2.32	2.160 35.64% Pervious Area				us Area	UPPATE ROTTING ALL STORMS			
2.05	3.	900	64.3	6% Imper	vious Area	olkiri	1444	, , ,	
7100						D	1NC/1701N	16 "BLOCKED" KTG	
	Tc	Length	Slope	Velocity	Capacity	Description	1 NOCO III		
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	8.3	100	0.0200	0.20		Sheet Flow,			
						Grass: Short	n= 0.150 P2=	4.50"	
	0.9	150	0.0200	2.87		Shallow Con-	centrated Flow,		
						Paved Kv= 2	20.3 fps		
	3.8	800	0.0030	3.49	7.62				
						20.0" Round	Area= 2.2 sf Pe	erim= 5.2' r= 0.42'	
						n= 0.013			
	13.0	1.050	Total						